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ABSTRACT

Standard axiomatizations of expected-utility theory

envision an agent with fixed probability assessments, who can be

observed to choose actions from varying opportunity sets (for

instance, pairs of lotteries). These axiomatizations also

envision that the agent's preferences among these actions depend

on the state of nature only through the state-dependent

consequences of the actions, and that these consequences are

clearly defined and observable. We sugge-st that this conception

may be an unnecessarily restrictive basis for empirical testing,

and instead study the pattern of choices from a fixed set of

actions as probability assessments change. We show that

maximization of the expectation of a general, state-dependent

utility function places nontrivial restrictions on such a choice

pattern. These restrictions are completely characterized by a

discrete version of an integrability condition. (N
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1. Introduction

There has been long-standing interest in testing expected-

utility theory against alternative theories of choice in risky or

uncertain situations. Until recently, the only direct tests were

based on experimentally generated data. The results of many of

these laboratory experiments were unfavorable to the expected-

utility hypothesis.1  Within the past decade, though, a

substantial body of non-experimental evidence has been shown to

conform well to the expected-utility hypothesis. This data

concerns a variety of dynamic, stochastic choice problems related

to optimal stopping. (These studies include Miller (1984), Pakes

(1986), Rust (1987) and Wolpin (1984).)

These conflicting results could be reconciled in several

different ways. It is possible that optimal-stopping problems

are somehow psychologically special, and that people's

performance with respect to these problems corresponds more

closely to expected-utility maximization than does their general

performance. It is also possible, though, that the experimental

evidence systematically under-represents people's conformity to

expected-utility theory. This under-representation may be

especially severe with respect to decision making by experts.

Expected-utility maximization with respect to an area of

substantive expertise is a learned, non-verbal, domain-specific

IA particularly careful experiment of this sort was done by

Grether and Plott (1979). References to other experiments are
given in the bibliography of Allais (1979).
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2
skill. Such skill may have to be acquired slowly and through

intensive study (for instance, over a period of several years of

apprenticeship or postgraduate professional education), and it

may not transfer instantaneously to an artificial task in an

experiment, even after it has been acquired. These

considerations show the great importance of further examining the

expected-utility hypothesis outside of the laboratory, and

particularly with respect to a variety of decision situations
3

faced by experts. In this paper, we provide a characterization

of expected-utility maximization that may be useful for such

investigations.

This characterization differs from the usual ones (such as

Savage (1954)) in two respects that we believe will facilitate

its empirical application. First, while the usual

characterizations assume a fixed probability distribution of the

2The non-verbal aspect of expected-utility maximization was
particularly emphasized by Savage (1954). If experimental
protocols require subjects to rely to a large extent on their
linguistic capabilities, then the experiments may not be
representative of other decision-making problems. An observation
bearing on this point has been made by Shortliffe and Buchanan
(1984, p. 236), who note the difficulty of obtaining verbal
probability estimates of diagnoses fro,. e-'erienced physicians.
This observation need not entail that physicians' treatment
decisions are inconsistent with expected-utility maximization.
The physicians may be skilled at making treatment decisions, but
yet have little facility at verbalizing the grounds for those
decisions.

3The success of applied economic theories that incorporate
the expected-utility hypothesis has sometimes been claimed to
corroborate the hypothesis. However, Machina (1982) and Chew,
Epstein and Zilcha (1986) show that comparative-statics
predictions cannot discriminate between expected utility and a
class of alternative decision criteria.
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possible states of nature and allow the set of feasible actions

to vary (typically, over pairs of alternative lotteries), here

the set of actions will remain fixed and the probability measure

will bc allowed to vary. Second, while the usual

characterizations stipulate that the utility of taking an action

in a given state of nature depends only on a specified

consequence of the action in that situation, here utility will be

4
defined directly in terms of the action and the state of nature.

To see why the probability measure -needs to be allowed to

vary, consider the problem of deciding whether an investor's

demand for financial assets is consistent with expected-utility

maximization. If the joint distribution of asset returns is

fixed, then this question can be decided. (Cf. Green, Lau and

Polemarchakis (1978), Green and Srivastava (1986) and Varian

(1983).) Changes in asset demand would be imputed to variation

of the investor's budget set as asset prices change. However,

actual changes in asset prices are thought to be largely a

consequence of changes in investors' perceptions of their joint

return distributions. Therefore, demand theory based on the

usual characterization of expected utility cannot be applied
5

straigtforwardly. In contrast, the empirical work on dynamic

4 In order to avoid reference to consequences, the utility
function must be made state contingent. State-contingent expected
utility has previously been axiomatized, in a fromework that
otherwise resembles Savage (1954), by Karni et al. (1983).

5 Attanasio and Weber (1987) and Epstein and Zin (1987) have
recently considered the precise role of expected-utility
maximization in the determination of equilibrium asset prices
under a rational-expectations assumption.
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expected-utility maximization has been successful precisely

because Bayes' theorem makes it possible to estimate how the

agent's probability assessments evolve.

To see why avoidance of reference to consequences of actions

may facilitate empirical work, consider an example of decision

making in medicine. A state of nature specifies the situation

of the patient, including the actual disease, state of general

health, economic and family circumstances, and so forth. An

action is a medical or surgical treatment. A consequence

specifies all of the aspects of the doctor-patient relationship

and of the patient's prognosis about which the doctor might be

concerned, and that a treatment might affect. Given a patient's

symptoms and medical history, the range of treatments that might

reasonably be prescribed will usually be quite small. However,

the consequence of a treatment is likely to be complex and

difficult to measure precise!v: is the progress of the disease

arrested, is the patient well enough to resume normal activities,

does the patient suffer pain or undesirable side effects, how

high is the cost of treatment to the patient, how high is the

doctor's remuneration, does the accomplishment of a state-of-

the-art surgical procedure enhance the doctor's prestige in the

medical community, and so forth. In this situation where

observations about a narrow range of observed choices among acts

would have to determine the utilities of a wide range of

consequences, some aspects of which cannot be observed, the

prospects for relating data about the doctor's decisions
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unambiguously to a utility function defined on consequences are

poor.

This example of medical decisions provides a good example of

how the present theory might be applied. Imagine a doctor who

must base each treatment decision on evidence from a medical

history and an examination of the patient. Suppose that, after

the treatment is done, a completely accurate diagnosis becomes

available. If the doctor treats many patients, then the

conditional relative frequencies of these diagnoses should

associate a probability measure on states of nature to each

medical hitory and examination outcome. For each of these

probability measures, the doctor has a preferred treatment. That

is, the doctor's choices can be represented by an empirical

behavior pattern that assigns actions to probability measures

over states of nature.

Behavior patterns of this form are analyzed in this paper.

It is shown that the hypothesis of expected-utility maximization

places theoretical restrictions on the form of the behavior

pattern. Whether or not a behavior pattern satisfies these

restrictions can be determined by solving a system of linear

inequalities. If the behavior is consistent with the expected-

utility hypothesis, then the system has a solution that can be

used to construct a utility function that rationalizes the

behavior. These results bear some formal similarity to the

standard problem of revealed preference in demand theory, and
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they could in fact be formulated within a generalized version of

that theory such as Richter (1979) has provided.6

2. Choice of actions under uncer ainty

The model to be studied here is a familiar one in most

respects. There is a set of acts, and a set of states of nature.

For mathematical simplicity, it will be assumed that both of

0 nthese sets are finite. Let A be the acts, and S-(s .... s ) be

the states. It is assumed that the subjective probability

assessments of the subject may be determined by any probability

measure over S corresponding to an element of a convex set MIn

having nonempty interior. If peM, then the probability measure

corresponding to p assigns probability pj to sj for JEI, and

probability I- 0 7
jn-1j to s . It will be convenient to define

:M-[0,1] by 11()-l-Z Then, if f:S-2, the expectation of f

with respect to p can be defined by

(1) EA [f]-r(P)f(s )+Z jaljf(si).

A behavior pattern is a mapping P:M-A. A utility function
a ua

is a mapping u:AXS-R. For aeA, define u :S-2 by ua(s)-u(a,s).

Utility function u rationalizes behavior pattern P if

(2) VpeM E A(up()1-max E [ua ], and

6 Another link between expected-utility theory and revealed-
preference theory is provided by Border (1987), who investigates
choice among lotteries. He shows that choices can be
rationalized by expected utility if they respect stochastic
dominance, provided that the set of available lotteries is closed
under mixtures. Because the utilities of actions in various
states are not assumed in this paper to be determined by monetary
payoffs from the actions, these actions cannot be ranked by
stochastic dominance.

7Clearly M must be a subset of {(p Vj p.:O and Zn 1 A I.JJ ~
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(3) VaE (M) 3peM (fi(p)-a and Va'oa E [ua ]<E [Ua],. 8

Note that, if is a permutation of A, and if f6'-4o and u

rationalizes 6, then there is a utility function t.' that

rationalizes 6': u'(O(a),s)-u(a,s). Therefore, whether or not f

is rationalizable depends only on the partition (8 1(a)IaeA).

Thus (2) and (3) may be restated in terms of partitions. For 11 a

finite partition of M, define an indirect utility function for H

to be any function v:ITxS-R. In particular, if is a behavior

pattern, u is a utility function, and -{fl- (a)laeA), then

-I
v(I (a)),s)-u(a,s) is an indirect utility function for 11. With

these definitions of H and v, and defining vw(s)-v(w,s) for reI,

(2) and (3) translate respectively as

(4) Vxre1 Vper E A[vJ-max £ Iv J, and

When II is any finite partition of M and conditions (4) and (5)

are satisfied by H and v, it will be said that v rationalizes II

and that 11 is expected-utility consistent.

If 11 were the partition of M induced by the expectation of

some random variable X, then (4) would correspond to the

definition in statistical dezision theory of v to be a proper

scoring rule for E[XJ. Although the goal of the present research

(to characterize the partitions for which (4) can be satisfied)

is different from the goal of research on scoring rules (to

8 Essentially, (3) states that the subject could not be
assured to do as well if any action were deleted from A. Without
(3), a constant utility function would rationalize every behavior
pattern.
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characterize the indirect utility functions for which (4) can be

satisfied with respect to a given partition), the two studies are

very closely related. in particular, Savage (1971) observed the

fundamental role of convexity that will be exploited below. In

the next section, Lemma 3 resembles the principal result of

Osband and Reichelstein (1985). Osband (1986) has pointed out

that (4) and (5) imply condition (9) of this paper, the convexity

of cl(r).

3. A necessary and sufficient condition

The main question to be answered in this paper is: when can

a finite partition of M be rationalized by an indirect utility

function? A preliminary answer is given in this section. This

answer will lead to a necessary and sufficient condition that can

be formulated in terms of simultaneous satisfiability, in the

strictly positive orthant of a Euclidean space, of a finite set

of linear equations. This algebraic formulation plausibly will

lead to the formulation of an efficient algorithm to decide the

question.

The idea of the theorem is given by the following heuristic

argument. Suppose that v is an indirect utility function for H,

a finite partition of M. Define V:M-N by

(6) V(j)-max E [v I

Since E [v 1 is an affine function of p for each 7r', by (1). V

is a polyhedral convex function. (That is, V is both convex and

piecewise linear. It is convex because it is the pointwise

supremum of a set of affine functions, and piecewise liuear
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because the set of affine functions is finite.) If (5) holds,

then, by the continuity of E A[vi] for each w'and by the

9
finiteness of 11, Virefl int(ir)00. Let yeint(r). Ther if (4)

holds, the gradient of V at a is

(7) VV(A)-(v(w,s )-v(ir,s 0 ), ... v(,sn )-v(7r,s 0)). 0

This suggests that the interiors of the elements of ]I are the

largest sets on which the gradient of V is defined and constant.

Moreover, given any polyhedral function V:M-2 having a gradient

that is related to rl in this way, (7) should determine an

indirect utility function v that satisfies (6).

This conjecture is true, and is stated below as a theorem.

To facilitate the statement of the theorem and later results, the

conditions that have just been described will be characterized

more formally. Suppose that

(8) A is a finite cover of H by polyhedral convex

bodies in M. 11

Furthermore, suppose that A is virtually a partition of M, except

that the boundaries of its elements may overlap. That is,

suppose that

(9) V6eA V6'eA (If 6V6', then int(6) n int(6") - 0.)

9 Topological interior, closure, and boundary are taken
relative to M.

1 0 VV denotes the gradient of V. Cf. Rockafellar (1970), p.
241.

1 1 That is, (a) A is a finite collection of subsets of M, (b)

M is the union of this collection, (c) each of the subsets is the
intersection of M with a finite set of closed half-spaces, and
(d) each subset has nonempty interior in M.
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If (8) and (9) are satisfied, then call A a polyhedral

decomposition of M. From the discussion above, it should be

clear that a polyhedral convex function induces a polyhedral

decomposition of its domain. Specifically, the function V

induces the polyhedral decomposition A defined by

(10) 6eA iff 3x [6 - cl((pIVV(A)-x)].
12

A polyhedral decomposition that satisfies (10) for some

polyhedral convex function V will be called a subgradient

decomposition. Now, the conjecture -stated above can be

reformulated as the assertion that H is expected-utility

consistent if and only if Icl(r) lrel is a subgradient

decomposition. This assertion is now proved via several lemmas.

Lemma i: If v rationalizes 11, then

Proof: Let p'er, and let p satisfy VWo', E [v']<E [vI. A

If

exists by (5). Define p -ap+(l-a)p', where ae(0,1). Then p"

satisfies Vw'or E A[v W]<E .[vf]. The lemma follows by letting a

approach 0. Q.E.D.

Lemma 2: If v rationalizes II, then

int(ff)-(pl W r' E Iv w ]<E [v,]).

Proof: (Y1 Vo'w'r E [v w]<E Av I] is open because 11 is

finite and because E [vr '] is continuous in p for every w' , so by

2Condition (10) means that int(7f) is the subset of M on

which VV(M) is the unique subgradient of V. Recall that y is a
subgradient of the convex function f at x if, for all x',
f(x') f(x)+y(x'-x). This inequality is called Fenchel's
inequality. It holds with strict inequality if y is not a
subgradient of f at both x and x'.
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Lemma 1, int(7)r(j Vw ' 0r E J[v f]<E [v ]). The inclusion

(JI V ,,r' E [v r ]<E [vw']})int(r) follows from (4) because

(AI Vr'07r E [v ]<E [vw]) is open. Q.E.D.

Lemma 3: If v rationalizes II, if V is defined by (6), and if

peint(r) , then VV(p) is defined and satisfies (7). Suppose also

that I' int(''). Then

(11) E [v ']-v(7r',s 0)+VV(A')A.

Proof: By (4) and (6), V coincides with an affine function

on a neighborhood of p. Thus VV(I) is defined, and (7) is

derived by computation using (1). The second assertion follows

directly from (4), (6), and (7). Q.E.D.

Lemma 4: Suppose that v rationalizes H, and that V is defined by

(6). If ir' ', jeint(ir), and p'eint(w'), then VV(A) OVV(A').

Proof: By Lemma 2 and (11),
0 0

0<[v(Xr,s )-v(ir',s ))+[VV(A)-VV(')]1. Interchanging p and p',

and r and r', and adding the resulting equation to the original

one, yields 0<[VV(p)-VV(P')](P-P'). This requires that

LVV(A)-VV(A')IOO. Q.E.D.

Lemma 5: Suppose that v rationalizes H and that V is defined by

(6). Then V is convex. If pint(r), then int(w)-(p' IVV(p) is

the unique subgradient of V at p').

Proof: Convexity of V is immediate from (6). Furthermore,

int(f)C{(' IVV(p) is the unique subgradient of V at p' ), by Lemma

3. Now suppose that u"Iint(r). By Lemmas 1 and 2, there is a
t t

sequence (p )-A", with (u CUX int(r'). By the finiteness of H

tthere is some ir' ' such that an infinite subsequence of (p ) is
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in int(x'). Let p'eint(w'). By (7), VV(pt)-VV(p') along this

subsequence. Therefore, both VV(p) and VV(p') are subgradients

of V at p", by Theorem 24.4 of Rockafellar (1970). This shows

that (p' IVV(u) is the unique subgradient of V at A' )Cint(r).

Q.E.D.

Lemma 6: Suppose that V:M-2 is a polyhedral convex function, and

that 1 and V satisfy (8) and (10). Then there is an indirect

utility function v that rationalizes H.

Proof: Let rell. By (8), int(w) is nonempty. Let ueint(r).

In order to satisfy (11) and (7), respectively, define

v(lS,0 )-V(p)-VV(p)p, and define v(x,sJ)-[VV(A)Ij+v(,s 0). Then,

if p'eint(w'), E vJA ]-(') [V(A' )-VV(.')p' ]+

Z j: 1JPj ( [VV(p') ]-+[V(p')-VV(A')A' ] )-V(U' )+VV(p' ) (;-A'). Thus

E [vw]-V(p), and E tvw']<V(A) if r'or by Fenchel's inequality and

(l0).13 This establishes (5). (4) is established by a limit

argument, using (8) and the continuity of V. Q.E.D.

Theorem 1: H is expected-utility consistent if and only if

(cl(r)jre) is a subgradient decomposition.

The proof of Theorem 1 is immediate from the lemmas.

4. Some partitions that are not expected-utility consistent

The requirement that an expected-utility-consistent

partition should essentially coincide with a polyhedral

decomposition is intuitive and geometrically concrete. Convexity

is the key economic aspect; it means that if the same act is

1 3 Fenchel's inequality is the statement that, for a convex

function f, f(x')af(x)+y(x'-x), with strict inequality if y is

not a subgradient of f at x'.
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a 2
preferred at both p and p , then that act will be preferred for

1 2
any random draw between p and p

The additional requirement (10) imposed on a subgradient

decomposition is less intuitive and more abstract. This section

attempts to foster some intuition for the role of (10) by

presenting two polyhedral decompositions that fail to be

subgradient decompositions, and by showing that these cannot be

obtained from expected-utility-consistent partitions. Both of

these examples assume three states of nature (n-2), allowing M to

be graphed (by making an affine transformation) as a neighborhood

of the origin in the plane.

Example 1: The first example is graphed in Figure 1. It

consists of three polyhedral convex sets. 61 is the intersection

of M with the lower half plane, and 6 2 and 63 are the

intersections of M with the right and left quadrants of the upper

half plane, respectively.

Suppose that these three sets were the images of the

intersections of H with the parts of the probability simplex

where acts 1, 2. and 3 were weakly preferred by an expected-

utility-maximizing agent. If act 3 were stricken from the choice

3 1 2
set, then 6 would have to be "divided up" between 6 and 6 so

as to leave a polyhedral decomposition. Clearly, the only way to

do this would be to extend 62 to cover the entire upper half of

the plane. It follows that the agent would be indifferent

between act 1 and act 2 along the same border that was originally

the line of indifference between act 2 and act 3. By
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transitivity, the agent would have to be indifferent between act

1 and act 2 along that border. But this cannot be, since that

1border is not contained in 61 . Therefore the decomposition is

not induced by an expected-utility-consistent partition.

ajme.2: The second example is shown in Figure 2. It is

constructed from two concentric squares. Let the vertexes of the

smaller square have coordinates (±l,±i), and let the vertexes of

the larger square have coordinates (±3,±3). Connect (1,1) to

(3,2), (-1,1) to (-2,3), (-1,-i) to (--3,-2), and (1,-I) to

(2,-3). This construction divides the larger square into five

polyhedral convex sets. Let the set to the right of the smaller

0
square be 6 , and number the other sets outside the smaller

square in counterclockwise order. Let the smaller square itself

4
be 6

This polyhedral decomposition can be shown not to be induced

by any expected-utility-consistent partition by a similar method

as above. If act 4 were eliminated from the choice set and if

the agent were an expected utility maximizer, then 64 would have

to be divided up among the other four regions so as to leave a

polyhedral decomposition. But in fact even enlarging S0 through

64 as much as convexity will allow leaves a square "hole" around

the origin, as Figure 3 shows. Hence the decomposition cannot be

induced by an expected-utility-consistent partition. In economic

terms, there is a circularity of preferences in the interior of

the hole: Act 0 is strictly preferred to act 1, act I is strictly
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preferred to act 2, act 2 is strictly preferred to act 3, and act

3 is strictly preferred to act 0.

Incidentally, this example shows that being a subgradient

decomposition is not always stable under small perturbations.

Consider the 5-element decomposition formed by connecting each

vertex of the smaller square to the corresponding vertex of the

larger square. Th.s is the subgradient decomposition induced by

the function V defined by V(x,y)-0 if max(JxJ,JyI) 1, and

V(xy)-max(JxJ,JyJ)-l otherwise. Clearly,- though, an arbitrarily

small rotation of each of the diagonal edges of this

decomposition will transform it to one that is qualitatively like

the decomposition of the example. It is conceivable that this

sort of instability might lead to inappropriate rejection of the

hypothesis of expected-utility maximization due to measurement

error.

5. Characterization of subgradient decompositions

The foregoing examples provide some intuition for why only

subgradient decompositions, rather than all polyhedral

decompositions, can arise from expected-utility maximization.

However, the examples do not directly provide a concrete picture

of what subgradient decompositions look like or a computational

procedure for recognizing them. The problem is that condition

(10) requires the existence of an unspecified polyhedral convex

function. For any given polyhedral decomposition, we would like

to be able to recognize wbether a function satisfying the

condition exists, and to be able to construct it if it does
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exist. Further analysis of the examples in this section will

lead to such a constructive characterization.

Two observations are in order. First, both of the examples

have been studied in the same way: by removing elements of the

polyhedral decomposition, trying to enlarge the remaining

elements to fill the gaps without violating the convexity

restrictions imposed by expected-utility maximization, and

finally checking for violations of transitivity. It is plausible

that this strategy could be generalized, and that it would

provide a characterization of the sort that we are seeking.

However, we will derive a somewhat different characterization

below.

Second, in the examples the impossibility of satisfying (10)

has been quite apparent, but in general this issue will be more

subtle. A third example, closely related to Example 1, will make

this point clear. To motivate this example, consider how it can

be shown by contradiction that Example 1 does not satisfy (10).

Imagine that (10) held, and think of Figure 1 as a view from

above of the polyhedral convex function V. To satisfy (10) all

of the flats of this graph must have different slopes. The flats
2 3n

lying above 6 2nd 6 are obtained by creasing the graph above

the boundary of 61, so that the flats lying above 62 and 63

become "flaps" attached to the flat lying above 6 . In order for

those flaps to have different slopes, though, the surface of the

2 3
graph must be "torn" above the boundary between 6 and 5 This

cannot happen, because it would imply that V were discontinuous.
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Now, consider a more subtle example for which continuity

considerations do not suffice to show the impossibility of

satisfying (10).

Example 3: This example is graphed in Figure 4. In place of the

boundary between the two subsets of the upper half plane in

Example 1, there is now an additional, wedge-shaped subset. The

graph of V can be adjusted above this wedge to repair the

discontinuity in the earlier example. However, the resulting

function will not be convex.

To present this example algebraically, define

6 1-((xy)jy 0), 6 2-((xy)j0 y x), 6 3-((xy)O y -x), and

6 4-((x,y)jy2max(x,-x]). These four sets comprise a polyhedral

decomposition A. The interiors of the elements of A are the

regions on which the gradients of a piecewise-linear function V
1

is defined and constant. Specifically, let V(x,y)-0 on 6

2 3 4V(x,y)-y on 6 , V(x,y)--y on 6 , and V(x,y)-x on 64 . However V

is not convex, as is easily seen by considering V(x,l) as a

function of x.

Of course, the fact that a polyhedral decomposition A is

induced by a non-convex function does not mean that it cannot
14

also be induced by some other function that is convex. In that

case, A would satisfy (10) and be a subgradient decomposition.

The same kind of argument as was given for Example 1 will work

2 4here also, but two of the elements of A -- either 6 and 6 , or

14 We were led to formulate Example 3 by J.-P. Benoit,who
raised the question of whether (10) is more restrictive than it
would be if only the piecewise linearity of V were required.
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3 4
else 6 and 64  will have to be deleted before trying to extend

the remaining subset of the upper half plane, if transitivity is

to lead to a contradiction. Moreover it is obvious that, if 614

were to be subdivided into m wedges radiating from the origin,

then all of these plus either 52 or 6 a total of m+l elements

of the polyhedral decomposition -- would have to be deleted

before transitivity would lead to a contradiction. Thus the

strategy of identifying violations of (10) by making deletions

can become very complex, even when there &re only three states of

nature. It would be desirable to have a criterion that is of

bounded complexity. Such a criterion, involving only the

inspection of pairs of adjacent elements of A, is now provided.

Notice that in both Example 1 and Example 3, the nonnegative

2
ray of the x-axis is a face of 6 , but is not an entire face of

I
6 1

. It turns out that such a mismatch of faces must not occur,

if (10) is to hold. This no-mismatch condition can be

reformulated in such a way that a graph can be associated with A

if it is satisfied, and this graphical interpretation will be

useful later.

To state the condition in this way, let 6 be a polyhedral

convex subset of MCIn with nonempty interior. Define an edge of

6 to be the relative interior of an (n-l)-dimensional face of 6.

Define the polyhedral decomposition A of M to be a polyhedral

graph if, whenever w is an edge of 6 and w' is an edge of 6' and

wf '&, then w-w'. Note that, according to these definitions,

the elements of A are vertexes of a finite graph, and two such
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vertexes are adjacent in the graph if and only if they share an

(n-l)-dimensional face in the decomposition.

Theorem 2: Every subgradient decomposition of M is a polyhedral

graph.

Proof: Suppose that A is a subgradient decomposition. By

(10), a function c:A-2 and a 1-1 function g:A-2 n exist such that

(12) VMeM V(p)-max SA[c(6)+g(6)p], and

(13) V6eA 6-(AJV(,u)-c(6)+g(6)A).

A contradiction will be derived from the- supposition that A is

not a polyhedral graph. Suppose particularly that w is an edge

of 6, w' is an edge of 6', js' e w', and w w'. Wnw' is a

relatively open set of a hyperplane H. Since (13) holds

everywhere on this set with respect to both 6 and 6', c(6)-c(6')

and [g(6')-g(6)] is perpendicular to H. w\w' has nonempty

relative interior in H, so there must be a third element 6" of A

having an edge w" and a member A" such that "ecwnw". Again, it

must be that c(6)-c(6") and (g(6")-g(6)] is perpendicular to H.

That is, if p is the unique unit vector perpendicular to H and

such that p(6-H)C(--,0], then [g(6')-g(6)] and [g(6")-g(6)] are

scalar multiples of p by positive constants ap and a",

respectively. Now, for some positive constant -f, p'+ype int(6')

and p"+Tpeint(6"). For p-p'+7p, (12) and (13) imply that o'a=",

and for p-,u"+-yp, these equations imply that a"2a'. That is,

a'-a", contradicting g being 1-1. Q.E.D.

Theorem 2 states that being a polyhedral graph is a

necessary condition for a polyhedral decomposition to be a
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subgradient decomposition, which is what is related to expected-

utility maximization via Theorem I. However, Example 2 shows

that being a polyhedral graph is not sufficient to be a

subgradient deccmposition. Figure 2 shows clearly that Example 2

is a polyhedral graph, but it has already been shown not to

satisfy (10). Further consideration of Example 2 will lead to

the formulation of an additional necessary condition for a

polyhedral graph to be a subgradient decomposition, and it will

turn out that this new condition is sufficient as well as being

necessary. The proof of sufficiency will be constructive.

Specifically, it will show that the condition is equivalent to

the consistency of a finite system of weak linear inequalities,

and it will provide an algorithm for defining a polyhedral convex

function V satisfying (10) if the condition holds.

We are now going to provide a different argument that

Example 2 does not satisfy condition (10). This argument relies

15
heavily on the fact that Example 2 is a polyhedral graph. For

1 5The argument could be reformulated to apply to any
polyhedral decomposition. To do so, associate a finite graph
with the decomposition by stipulating that 6 and 6' share an
edge, the relative interior of 6n6' , whenever that set has
dimension n-l. Then the present argument and the proof of the
characterization theorem (Theorem 3) below would remain sound
without any essential change, and Theorem 2 could be derived from

Theorem 3 as a corollary. That approach would have the advantage
of making as clear as possible how fundamental are the

integrability considerations with which Theorem 3 is concerned.
We have proved Theorem 2 directly because it is of some

independent interest to pursue as far as possible the elementary
approach to characterization (i.e., without transforming the
problem into one regarding consistency of a system of linear
inequalities) that has been studied so far in the paper. In
addition, the direct proof is actually shorter than is the proof
from Theorem 3. Theorem 2 shows that there is no loss of
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any distinct 6j and Sk that share an edge, let cJk be a nonzero

vector of 22 satisfying

(14) jk ( 6 k- 6 J)C[O,®).

Cjk is called the directed edge from Sj to 6 Let E be an

assignment of these vectors, one vector to each ordered pair of

vertexes that share an edge. (That is, if 6i and 6 k are

jk kj
adjacent, then E will specify both non-zero vectors k and .

For any polyhedral graph A and set E of vectors satisfying these

conditions (where ECJ n if MR n), call (A,E-) a polyhedral directed

graph. If 6j and 6 k share an edge, then (14) determin-s cjk up

to a positive scal~r multiple, since the shared edge has

dimension (n-l) and 6 -6 j has nonempty interior. This fact and

Fenchel's inequility imply the following two lemmas.

Lemma 7: Suppose that A is a subgradient decomposition, and

specifically that the convex function V:M-R, the function c:A-R,

and the 1-I function g:A- n satisfy (12) and (13). (That is if

pcint(6), then VV(14)-g(6).) If

(15) cjk- g(k)-g(6J),

and if E is the set of all of these vectors for 6i and 6k sfaring

a common edge, then (A,E) is a polyhedral directed graph.

Lemma 8: For every polyhedral graph A, at least one polyhedral

directed graph (A,E) exists. If (A,E) and (A,F) are polyhedral

directed graphs defined from A, having directed edges c jk and jk

respectively, then there exist positive scalars a j such that

(16) ~Jk-jkjk

generality in restricting our attention to polyhedral graphs.
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Directed edges will now be defined for the polyhedral graph

A of Example 2, and it will be shown that positive scalars ajk

cannot be found to satisfy (15) and (16) for any 1-1 function

g:A- n . By Lemma 7, '.hen, A cannot be a subgradient

decomposition.

One set F of directed edges satisfying (14) consists of:

40 (,0), E41-(0,I), E42 (-I,0), E43 _ and E01-(-1,2),

E12 (-2,-l), E23-(1,-2), 30-(2,1), and jk_ _kj for the

remaining elements.

Suppose that a polyhedral directed graph could alternatively

be induced on A by the subgradient vectors of a polyhedral convex

function, as envisioned by Lemma 7. That is, suppose that g:A n

is 1-1, and that (15) and (16) define positixe scalars a jk (where

the vectors cjk are as in Lemma 8). A contradiction will be

derived. By (15),
(17 0-40+ 01+ 1 4

Applying (16) to (17) yields

(18) 0-=40 40 01 01 14 14

The x-coordinate of (18) is
4001

(19) 0-a 40-l

and the y-coordinate is

(20) 0-2a 01- 1 4

Multiplying (19) by 2 and adding (20) yields

(21) 0-2 40-a14
41 14 41 1441 14

By (15), E 4 C1 Also E 41_ , so a -a by (16). Applied

to (20) and (21), this yields
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41 40
(22) a -2a

Similarly it can be shown that

40_ 43 43_ 42 42_ 41
(23) a -2a , a 2a, and a 2a

40 40
But (22) and (23) imply that a -16a 0 , which is only possible if

a -0. This would violate Lemma 8, though, so a contradiction has

been reached. Thus A cannot be a subgradient decomposition,

although it is a polyhedral graph.

In the context of a specific example, it has just been shown

that a subgradient decomposition must satisfy a discrete version

of an integrability condition. Integrability conditions are

familiar from revealed-preference theory where, in the presence

of subsidiary technical conditions, they are sufficient as well

as necessary for behavior to be consistent with utility

maximization. The present integrability condition will now be

stated in general terms, and will be shown to be sufficient as

well as necessary for a polyhedral graph to be consistent (in the

sense of Theorem i) with expected-utility maximization.

An elementary circuit in a directed graph is a path from

some vertex, following edges, until the initial vertex has been

reached again. A polyhedral directed graph is a directed graph,

with the vertexes being the elements of A. The polyhedral graph

A shown in Figure 2 was proved not to be a subgradient

decomposition by proving that, in any polyhedral directed graph

(A,E), the vector sum of the directed edges of some elementary

circuit must be nonzero. In fact, the condition that E can be

found for which every such vector sum equals zero is both
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necessary and sufficient for A to be a subgradient decomposition.

This equivalence is stated as a theorem, after a formal

definition of an elementary circuit is given.

A subset -yCA 2 is an elementary circuit of the polyhedral

graph A if there is a subset DCA such that

(24) y C ((j,k)ljeD and keD and 6i and6 k share an edge),

(25) VjeD 3!k (j,k)c-y,

(26) VkeD 3!j (j,k)c-, and

(27) No nonempty -y'Cj satisfies (244, (25) and (26) with D

replaced by any D'CA.

Define r to be the set of elementary circuits of A.

Theorem 3: If A is a polyhedral graph, then A is a subgradient

decomposition if and only if there exists a polyhedral directed

graph (A,E) such that the sum of directed edges along every

elementary circuit is zero, i. e.,

(28) V er m (J,k)cT jk-0 .

Outline of the proof: Suppose that A is a subgradient

decomposition, satisfying (10) with respect to the convex

function V. Then E can be defined by

(29) cJk-VV( )-VV(j),

where pJcO and Ake6k whenever 6j and 6k  share an edge.

Conversely, suppose that (28) holds. A convex function V

satisfying (10) will be constructed. At stage 1, define V(M)-0

for jS1 and VV(p)-0 for peint(6 ). For t>l, define D -(61 V and

VV have been defined for 6 by stage t-l). Suppose that A\D t 0.

It is easily shown that a polyhedral graph is connected, which
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implies that there are j and k such that Sj and Sk share an edge

jk k k
w, 6JeDt, and 6 IDt. Let pew, jp'cint(S ), and p"e6 . Then, at

k 6k

stage t, define VV on int(6 k ) by (29) and define V on 8 by

(30) V(A&)-V()+VV(M')(M"-p).

By (28), this recursive definition is consistent. The proof that

V is convex is based on (14). Q.E.D.

The motivation for Theorem 3 is to determine whether the

convex function required by (10) in Theorem I exists. By

Theorems 2 and 3, this question can b'e answered by finding

whether A-(cl(r)jre} is a polyhedral graph, and, if so, whether

a polyhedral directed graph (AE) exists that satisfies (28). A

reduction of this latter question to a system of linear weak

inequalities is now obtained. In order to do this, first form a

polyhedral directed graph (A,F) which is guaranteed by Lemma 8 to

exist. (For instance, F may be constructed by taking unit

vectors that satisfy (14) to be the directed edges k. ) Then,

by Lemma 8, (28) can be satisfied if and only if there exist

positive scalars ajk (defined whenever 61 and 6k share an edge)

such that

(31) v7 r Z k ,kk)0

By the linearity of the equations in (31), the existence of

positive solutions is equivalent to the existence of aj k that

satisfy both (31) and also

(32) jkzl.

Thus, (31) and (32) define a system of linear weak inequalities,

the consistency of which system is equivalent to A being a
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subgradient decomposition, and hence equivalent to there existing

a utility function that rationalizes the partition H from which A

is derived.

6. Conclusion

Standard axiomatizations of expected-utility thpsry envision

an agent with fixed probability assessmcnts, who can be observed

to choose actions from varying opportunity sets (for instance,

pairs of lotteries) These axiomatizations also envision that

the agent's pzeferences among these actions depend on the state

of nature only through the state-dependent consequences of the

actions, and that these consequences are clearly defined and

observable. In this paper, we have suggested that this

conception of the observable consequences of the theory may be an

unsatisfactory basis for empirical testing of the theory.

Rather, there may be many opportunities to observe choices from a

fixed set of actions as probability assessments change. We have

also suggested that the specification of utilities in terms of

consequences may be quite difficult to implement empirically. On

this view, a less restrictive specification of state-dependent

utility needs to be studied.

It might be asked whether this new conception of observable

consequences of expected-utility maximization places any testable

restrictions on observation. The results of this paper show that

there will be testable restrictions if the decision maker's

probability assessments can be observed or estimated. One of

these restrictions is that each action must be chosen for all
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probability measures in the interior of some convex subset of the

probability simplex. The example constructed in section 5 (and

depicted in Figure 1) shows that this convexity restriction does

not exhaust tht empirical content of the theory. Theorem 3 fully

characterizes this empirical content in terms of a discrete

version of an integrability condition, familiar from the theory

of choice under certainty.

There are at least two ways in which the decision maker's

probability assessments might be treated as observable or

estimable. One would be to elicit them directly, perhaps using a

"proper scoring rule" that would provide incentives for truthful

revelation. The other would be to impose a rational-

expectations assumption that the decision maker knows the true

statistical distribution from which observations are drawn.

Consider, for instance, the example of medical diagnosis that was

discussed in the introduction. The medical history and

examination results that constitute the doctor's evidence about a

patient can be viewed as a discrete-valued measurement. This

measurement partitions the set of patients into finitely many

equivalence classes. That is, all patients within a class have

identical medical histories and examination results. Within each

equivalence class, there is a sample distribution of eventual,
16

accurate diagnoses. These diagnosis outcomes can be treated as

1 6 Edwards (1972, pp. 139-140) quoted by Shortliffe and
Buchanan (1984, p.236) has described some of the practical
difficulties of gathering and interpreting such a data set.
Nevertheless, particularly because the use of computers has
dramatically improved the quality of medical data available, the
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an independent sample drawn from the doctor's posterior

probability distribution conditioned on the evidence. The

likelihood function regarding the beliefs of the doctor can then

be formed in a standard way. This rational-expectations approach

to estimation has two particular virtues when the decision maker

is an expert in the decision domain being studied. First, such

an expert will have substantial experience, and standard results

of decision theory imply that conditioning on such experience

should closely approximate the distribution of the evidence.

Second, regardless of what are the subjective beliefs of the

decision maker, whether an expert optimizes with respect to the

empirical distribution of a large sample of decision situations

is of independent interest. This objective assessment, rather

than the expert's own subjective assessment of success, might

even be what the expert's clients are most eager to know.

Finally, it might be asked whether the characterization of

expected-utility maximization provided in Theorem 3 can

potentially be of direct use in the kind of empirical study that

is suggested here. This question arises because any data set

will be finite, so its consistency with expected-utility theory

can be determined directly by seeing whether finitely many

instances of inequality (2) are a consistent system. The answer

to the question has to do with computational complexity. Let a

be the number of actions available to the decision maker. Then

the number of linear inequalities that must be solved to

use of such data may well be feasible.
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implement the direct approach is (c-l) times the cardinality of

the data partition that was defined in the preceding paragraph.

Theorem 3 concerns a polyhedral graph that has at most a(a-l)/2

edges, and the number of linear inequalities that have to be

solved is roughly equal to the number of states of nature times

the number of elementary cycles of this graph. If the sets of

states of nature and of actions are small, but the data partition

is fine, it might be possible to apply the geometric insights of

Theorem 3 to minimize the amount of computation that is required.

In particular, only comparisons between pairs of actions

corresponding to adjacent vertexes of the polyhedral graph, and

comparisons made at partition elements having sample

distributions close to the boundaries of those vertexes, may be

necessary. If so, then Theorem 3 may have considerable practical

importance.
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